
Computing Resolutions Over Finite p-Groups

Johannes Grabmeier1 and Larry A. Lambe2

1 IBM Deutschland Informationssysteme GmbH, Postfach 103068, D-69020
Heidelberg, Germany, grabm@de.ibm.com

2 Centre for Innovative Computation University of Wales, Bangor, Gwynedd,
LL57 1UT U.K. l.lambe@bangor.ac.uk

Dedicated to Professor Adalbert Kerber at the occasion of his 60th birthday.

Abstract. A uniform and constructive approach for the computation of resolutions
and for (co)homology computations for any finite p-group is detailed. The resolu-
tions we construct ([32]) are, as vector spaces, as small as the minimal resolution
of IFp over the elementary abelian p-group of the same order as the group under
study. Our implementations are based on the development of sophisticated alge-
braic data structures. Applications to calculating functional cocycles are given and
the possibility of constructing interesting codes using such methods is presented.

1 Introduction

In this paper, we present a uniform constructive approach to calcu-
lating relatively small resolutions over finite p-groups. The algorithm
we use comes from [32, 8.1.8 and the penultimate paragraph of 9.4].
There has been a massive amount of work done on the structure of
p-groups since the beginning of group theory. A good introduction is
[22].

We combine mathematical and computer methods to construct the
uniform resolutions in this paper. These resolutions are much smaller
than the bar construction [34, Chapter IV, §5] (or Sect. 3.4), but in
fact, actually use the bar construction in an essential way. As vector
spaces over IFp (the field with p elements), the resolutions are as small
as the minimal resolution of IFp over the elementary abelian p-group
G+ of the same order as the group G under study.

In low degrees, (e.g. less than or equal to 7 depending on the size
of the group), these resolutions can be used to explicitly calculate not
only homology and cohomology, but explicit cycle and (functional)
cocycle representives of classes. This takes things a step further than
one can go with, e.g. GAP or MAGMA where one can only get at
a basis for first and second (co)homology. Having functional cocycles
in hand allows one to examine interesting combinatorial properties. In

2

this way we mention briefly how certain codes arise from some explicit
cocycles. Also see [9] and [10].

We note that, in general, in order to increase practicality further,
one needs to devise “reduction strategies” along the lines of [27] to
reduce the size of the resolution for a general group. Our moderate
sized resolutions are a good starting point for these methods, but such
reductions are not within the scope of the current paper and will be
discussed elsewhere.

A wide variety of algebraic data structures were required for our
implementations. We briefly recall the mathematical setting for all
these algebraic data structures and we also discuss them from the
viewpoint of implementation. In so doing, we realized that it is well
worth and by no means trivial to design a Generic Language (GL)
for the description and natural implementations of sophisticated alge-
braic objects, algorithms and data structures. However, these funda-
mental considerations combining mathematical and computer science
methods and techniques would be far beyond the scope of the current
paper and hence will be developed and discussed elsewhere [5]. For
now, we use the computer algebra system AXIOM [24] which consists
of a language, compiler, interpreter and a user interface to accomplish
our goals.

The algorithm we present in Sect. 5 is of a recursive nature and can
be applied naturally to p-groups G given as a polynomial perturbation
of the elementary abelian groupG+ (Sect. 2.4). If the group is not given
this way, we use the theorems of Jennings and Birkhoff-Poincaré-Witt
to construct an appropriate isomorphism Ξ : IFpG+

- IFpG as
vector spaces. This is related to the mod-p lower central series of G.

2 Finite p-groups

In this section, we give an exposition of some well-known properties
of finite p-groups needed to understand the algorithms presented for
practical applications of the main theorems in Sect. 4.

2.1 The mod-p Lower Central Series

For each finite p-group G, an n-dimensional mod-p restricted Lie al-
gebra grpG can be defined ([25]) using the mod-p lower central series
G = Z1 ≥ Z2 ≥ Here Zi is defined by

Zi = 〈(x1, (x2, (. . . (xj−1, xj) . . .)yp
k |jpk ≥ i〉

3

or equivalently, for i > 1, Zi = (Zi−1, Z1)Zjp where j is the smallest
integer greater than or equal to i

p .
As (Zi)i≥1 in (2.1) is a p-filtration of the group G, i.e. the com-

mutator group (Zi, Zj) is contained in Zi+j and Zpi ⊆ Zpi, the groups
Zi/Zi+1 (of order say pdi) are abelian and elementary, and hence we
are able to define the IFp-vector space grpG = ⊕i≥1Zi/Zi+1 and recur-
sively can choose elements {xi,k|1 ≤ k ≤ di} in the group, use their
remainder classes as an IFp-basis and define the Lie algebra multipli-
cation

[xi,k, xj,l] = (xi,k, xj,l)

by using the commutator (xi,k, xj,l) in the group and reducing modulo
the next subgroup Zi+j+1 in the filtration. More precisely, let ρi denote
the natural surjection ρi : Zi - Zi/Zi+1. Then the Lie bracket for
elements ρi(x) ∈ Zi/Zi+1 and ρj(y) ∈ Zj/Zj+1 is defined by

[ρi(x), ρj(y)] = ρi+j((x, y))

while the definition
ρi(x)p = ρip(xp)

satisfies the identities given on pages 91−93 in [25] (also see [23]), hence
it is a p-restriction and this indeed yields a p-restricted Lie algebra.
Let ε : IFpG - IFp,

∑
g agg 7→

∑
g ag (cf. 3.3) be the augmentation of

the group algebra IFpG and I = ker(ε) the augmentation ideal. Then
note also that the important relation used below (2.3):

Zi = {g ∈ G|(g − 1) ∈ Ii}

holds ([25]).

2.2 The Universal Enveloping Algebra of a p-Restricted Lie
Algebra and the Theorem of Birkhoff-Poincaré-Witt

Let L be an ordinary Lie algebra over IFp. One has the universal en-
veloping algebra T (L)/J , where T (L) is the tensor algebra of the un-
derlying vector space structure of L and J is the ideal generated by
{x ⊗ y − y ⊗ x − [x, y] |x, y ∈ L} (see e.g. [37]) – there is a universal
enveloping algebra for p-restricted Lie algebras. One adds the addi-
tional relations x⊗ . . .⊗ x︸ ︷︷ ︸

p

−xp for x ∈ L to the ideal J . We denote

this algebra by V(L) for a p-restricted Lie algebra L. Similar to the

4

ordinary case, if A is any associative algebra over IFp, there is a functor
L such that L(A) is a p-restricted Lie algebra. The underlying vector
space structure is that of A, the bracket is [x, y] = xy − yx, and the
restriction is given by the p-th power in A. Furthermore, the universal
property for V(L) holds for any p-restricted Lie algebra, viz. any map
f : L - L(A) extends to a unique algebra map V(f) : V(L) - A
(see [23]).
V(L) has a natural grading induced by the filtering by length, and

hence we can form the associated graded algebra, i.e. E0(V(L)) =∑
i≥0 Vi/Vi−1, where Vi for i ≥ 0 is the submodule consisting of all

elements, which are images of elements in the tensor algebra of (total)
length less or equal to i and V−1 = 0. This construction is important
for computation in the universal enveloping algebra V(grpG) of the
p-restricted Lie algebra grpG as one can make use of the p-modular
version of the Birkhoff-Poincaré-Witt theorem.

Theorem 1. Let L be a p-restricted Lie algebra with basis {e1, . . . , en}.
The associated graded algebra E0(V(L)) of the universal enveloping al-
gebra V(L) given by the length filtration is isomorphic as a graded IFp-
algebra to the algebra IFp[e1, . . . , en]/(e1

p, . . . , en
p) of truncated poly-

nomials.

The proof is given in [23].

2.3 The Theorem of Jennings

The theorem of Jennings, [25], is the final link between these construc-
tions.

Theorem 2. Let (Zi)i>0 be the mod−p lower central series of a finite
p-group G and let I = ker(ε) be the augmentation ideal in the group
ring IFpG. Let E0(IFpG) =

∑
i≥0 I

i/Ii+1 be the associated graded al-
gebra with respect to the filtration given by powers of the augmentation
ideal I. Let ρi denote both the canonical surjections Zi - Zi/Zi+1

and Ii - Ii/Ii+1. Then ρi(x) 7→ ρi(x−1) induces an homomorphism
of p-restricted Lie algebras grpG - L(E0(IFpG)) and its extension
to a map

V(grpG) - E0(IFpG)

is a graded algebra isomorphism.

5

Note that from the construction of xi,k in 2.1 it is clear that for
each element g of the group there is a unique sequence of exponents
0 ≤ εi,j < p such that g =

∏
i≥1

∏di
k=1 x

εi,k
i,k , where the order of the

multiplied elements is lexicographic w.r.to (i, k). The crucial step in
Jennings’ work and particularly important for implementations is his
proof that

xε =
∏
i≥1

di∏
k=1

(xi,k − 1)εi,k

in E0(IFpG) for 0 ≤ εi,k < p (same ordering) is an IFp-Basis. Note
that all these basis elements are homogeneous, where the degree is
computed by deg(xε) =

∑
i≥1

∑di
k=1 iεi,k, and all the basis elements of

degree i form a basis of Ii/Ii+1 ([25]).
This theorem gives a close connection between restricted Lie alge-

bras and finite p-groups. It is an important relation. It was generalized
by Quillen to all groups – not just p-groups, see [36].

2.4 Polynomial Group Laws

It is not hard to see that any group G of order pn is isomorphic to a
group of the form (IFnp , ρ), where the group law ρ : IFnp × IFnp - IFnp
is a polynomial function. That is, the i-th component function ρi(a, b)
is given by a polynomial in the coordinates (a1, . . . , an, b1, . . . , bn) with
coefficients in IFp. Furthermore, the ρi may be chosen to satisfy

ρi(a, b) = ai + bi + µi(a1, . . . , ai−1, b1, . . . , bi−1) (1)

where µi is zero if any argument is zero. It is clear that the identity
element is the zero vector and that µi cannot have a constant term.

Letting en = (0, . . . , 0, 1), it is clear that en has order p, ejn =
(0, . . . , 0, j) and all these elements are in the center of the group.

The proof is by induction. Clearly the result is true for an elemen-
tary abelian p-group since its operation is just +. Assume inductively
that the result is true for all finite p-groups G of order pn. Given a
finite p-group G̃ of order pn+1, as is well-known, there is a non-trivial
element in the center and it can be chosen to have order p. We therefore
have a central extension

0 - (IFp,+)
α- G̃

β- G - 1.

6

As is also well-known ([34]), a 2-cocycle µ arises by choosing a right

inverse u : G - G̃ for β with u(1) = 1 and taking G ×G µ- IFp

to be µ(a, b) = u(a)u(b)u(ab)−1.
Assuming inductively that G and the group law ρ of G are of the

desired form and noting that the group G̃ is isomorphic to the group
given by G× IFp with group law

ρ̃((a, an+1), (b, bn+1)) = (ρ(a, b), an+1 + bn+1 + µn+1(a, b)),

the result follows.
A natural class of examples is given by the upper triangular n× n

matrix groups over IFp, where n is any positive integer.

UTn(p) =





1 a1 an . . . am

0 1 a2
. . .

...
...

. a2n−3

0 0
. an−1

0 0 0
. . . 1


| ai,j ∈ IFp


. (2)

Clearly, UTn(p) ∼= (IFmp , ρ) where m =
(n

2

)
and the group law (matrix

multiplication) is a polynomial function of the required form. Note also
that any finite p-group can be embedded in UTn(p) for some n (see
[22]).

For the class of cyclic groups C2n of order 2n it is also easy to
write down a polynomial group law. Define c1 = 0 and for any positive
integer i, let ρi = ai + bi + ci where

ci(a1, . . . , ai−1, b1, . . . , bi−1) =
i−1∑
γ=1

aγbγ

i−1∏
κ=γ+1

(aκ + bκ). (3)

Then for all positive integers n, ρ = (ρ1, . . . , ρn) is a polynomial group
law and in fact, the group (IFn2 , ρ) determined by ρ is a cyclic group
of order 2n. Note that this group is generated by (1, 0, . . . , 0). More
generally, if ei is the ith standard basis element vector, then eiei = ei+1

and ei generates a subgroup of order 2n+1−i. Moreover,

(e1)j = (j0, j1, . . . , jn−2, jn−1)

for 0 ≤ j < 2n and j =
∑n−1
ν=0 jν2ν is the representation of j as a binary

number.

7

Note also that c0 = 0 and ci+1 = ci(ai + bi) + aibi. It is easily
seen, that the polynomial group law precisely describes the addition
of binary numbers. Contrary to the usual we have to reverse the order
of the digits in this situation. A proof consists in verifying that adding
three natural numbers ai, bi and a carry ci from the position before
from {0, 1} to get (ci+1, ρi)2 can be realized recursively by ρi = ai +
bi + ci (sum bits of two half adders) and the carry bit ci+1 = aibi +
(ai + bi)ci = aibi ∨ (ai + bi)ci as aibi and (ai + bi)ci are never both
equal to 1. This shows that we indeed have the usual implementation
of a full adder.

For another natural example, let i be a positive integer and define
ρi = ai + bi + ci−1,2 + δia1, where ci−1,2 is the cyclic cocycle for the
positions 2, . . . , i and δi =

∑i
κ=1 pκ, where pκ is recursively defined by

p1 = 0, p2 = 0, pκ+1 = (bκ + aκ)δκ + cκ−1,2 + bκ.

Then for all positive integers n, ρ = (ρ1, . . . , ρn) is a polynomial group
law and the group (IFn2 , ρ) is a dihedral group D2n of order 2n. Its
cyclic subgroup of order 2n−1 can be generated by c = (0, 1, 0, . . . , 0),
while x = (1, 0, 0, . . . , 0) is a reflection.

This can be verified by direct computation for the products xa =
(1 + a1, a2, . . . , an−2), ax = e1 + a for a ∈ D2n where, as above, e1 =
(1, 0, . . . , 0) and (x(ci))(x(ci)) = 1 as well relating the recursion of p
and ρ to the computation of a−1. Note that for i = i2+i32+. . .+in2n−2

we denoted by i2 + i32 + . . .+ in2n−2 the element −i modulo 2n−1.

3 Some Homological Algebra

We recall some basic facts from homological algebra needed to under-
stand the purpose of the algorithms presented in Sect. 5. Throughout
this section, R will denote a commutative ring with unit.

3.1 Chain/Cochain Complexes

A chain complex over R is a sequence of R-modules and R-linear maps

. . .
dn+1- Xn

dn- Xn−1
- . . .

such that for all n, dndn+1 = 0. Following the usual conventions, such a
chain complex will be denoted by (X, d) or simply X when the context

8

is clear. The map d is called the differential. If it needs to be stressed,
we will write the differential in X as dX . Elements of Xn are said to
have degree n and if x ∈ Xn, we write |x| for its degree. Since d lowers
the degree by one, we say it has degree −1 and we write |d| = −1.

The nth homology module ofX, denoted byHn(X) is, by definition,
the quotient module ker(dn)/im(dn+1), the homology of X is H∗(X) =
⊕nHn(X).

A cochain complex over R is a sequence of R-modules and R-linear
maps

. . . �
dn

Xn
�dn−1

Xn−1
� . . .

such that for all n, dndn−1 = 0. The nth cohomology module of X, de-
noted byHn(X) is, by definition, the quotient module ker(dn)/im(dn−1).
The cohomology of X is defined to be H∗(X) = ⊕nHn(X).

Note that ifX is chain complex, then the linear dualX∗ = HomR(X,R)
is a cochain complex in the obvious way.

3.1.1 Chain Maps and Homotopies A chain map f : X - Y
is a sequence of R-linear maps making the diagram

Xn
fn - Yn

Xn−1

dn
?

fn−1

- Yn−1

dn
?

commute. Its easy to see that this condition causes any chain map to
induce an R-linear map on homology H∗(f) : H∗(X) - H∗(Y) in
the obvious way.

Note that the identity map on X which we will denote by 1X is a
chain map.

Two chain maps f, g : X - Y are said to be chain homotopic (by
φ) if there is an R-linear map φn : Xn

- Yn+1 such that φn−1dn +
dn+1φn = fn − gn for all n. Following conventions, this condition is
simply written dφ + φd = f − g. The (degree +1) map φ is called a
chain homotopy between f and g. Its easy to see that if f and g are
chain homotopic, then they induce the same map in homology.

Note that these notions clearly have analogues for cochain com-
plexes.

9

3.1.2 Strong Deformation Retracts Let X and Y be chain com-
plexes, ∇ : X - Y , f : Y - X be chain maps and let φ :
Y - Y be a degree +1 R-linear map such that f∇ = 1X and
dφ + φd = 1Y −∇f . Thus, f and ∇ compose to the identity, but the
composition the other way around is only chain homotopic to the iden-
tity. When these conditions hold, we say that this collection of data
forms a strong deformation retraction (SDR) and we write

X
∇-

�
f

(Y, φ). (4)

Crucial to computations are the side conditions ([30])

φ2 = 0, φ∇ = 0, and, fφ = 0.

In fact, it can be shown with a bit of computation that these may
always be assumed to hold: if the last two do not hold, replace φ by
φ′ = D(φ)φD(φ) where D(φ) = φd + dφ and the last two conditions
will now hold with respect to φ′. If the first condition does not hold
for φ′, replace it by φ′′ = φ′dφ′ and all three conditions will hold for
the chain homotopy φ′′.

3.2 The Perturbation Lemma

Given the SDR (4) and in addition a second differential d′Y on Y , let
t = d′Y − dY . The map t is called the initiator ([1]). The perturbation
lemma, [2], [12], [1] states that if we set tn = (tφ)n−1t, n ≥ 1 and,
for each n, define new maps on X:

∂n = d+ f(t1 + t2 + . . .+ tn−1)∇ (5)
∇n = ∇+ φ(t1 + t2 + . . .+ tn−1)∇. (6)

On Y :

fn = f + f(t1 + t2 + . . .+ tn−1)φ (7)
φn = φ+ φ(t1 + t2 + . . .+ tn−1)φ. (8)

then in the limits (provided they exist), we have new SDR data

(X, ∂∞)
∇∞-
�
f∞

((Y, d′Y), φ∞). (9)

10

Note that the limits will certainly exist if tφ is nilpotent in each
degree.

Examples are given in [2], [12], [28], [33], [31], [29], [30], [13], [14],
[21], [19], [20], for example. In particular, this paper discusses an im-
plementation of the algorithm given at the end of section (9.4) in [32].

3.3 Homology and Cohomology of Algebras

Let A be an algebra over R. For a left A-module M , a projective
resolution of M over A is an exact sequence of projective A-modules

. . .
d2- X1

d1- X0
ε- M - 0. (10)

In particular, there is an associated chain complex X:

. . .
d2- X1

d1- X0
- 0

such that Hi(X) = 0 if i > 0 and H0(X) = M . Note that we will often

write (10) as X
ε- M - 0

If N is another A-module and X is a projective resolution, X⊗AN
is a chain complex whose homology is TorA(M,N) and the (co)homology
of the chain complex HomA(M,N) is ExtA(M,N). In the special case
that A is augmented over R, i.e. comes equipped with a ring homomor-
phism A

ε- R - 0, we can make R a left A-module via the action
ar = ε(a)r, for a ∈ A, r ∈ R. In this special case, it is conventional
to denote TorA(A,R) by H∗(A) and call it the homology of A and in
addition, denote ExtA(A,R) by H∗(A) and call it the cohomology of
A.

3.3.1 Homology and Cohomology of Groups If G is any group,
let RG be the group ring over R, i.e. the free R-module over R with
basis G and multiplication given by the bilinear extension of the prod-
uct in G to all of RG. This algebra is augmented over R by ε(

∑
rgg) =∑

rg. The homology and cohomology of RG (in the sense above) are
simply denoted by H∗(G) and H∗(G) in this case. In this paper, we
are concerned with the case that G is a finite p-group and R = IFp.

3.4 The Standard Resolution (Bar Construction)

Let A be an R-Algebra with augmentation ε as above. The bar con-
struction B(A) ([34], [3]) is a particular A-free resolution of R. It is of

11

the form B(A) = A⊗R B̄(A) where

B̄(A) =
∑
n≥0

⊗nRĀ,

and Ā = A/R (thinking of R as a submodule of A via the unit).
Following convention, we write a[a1| . . . |an] = a ⊗ a1 ⊗ . . . ⊗ an for
an element of A ⊗R B̄(A) and we think of the ai as coming from A
with the convention that [a1| . . . |an] = 0 if one of the ai is in R. Also,
the class of the identity element of A in B̄0(A) = Ā is denoted by [].
Elements of B̄n(A) = ⊗nRĀ are called reduced elements.

Define an R-linear map B(A)
s- B(A) by

s(a[a1| . . . |an]) = [a|a1| . . . |an]

and extend the augmentation map to all of B(A) by taking ε(a[]) =

ε(a) and ε(a[a1| . . . |an]) = 0 if n ≥ 1. Let R
σ- A denote the unit

map. Now consider the equation

∂s+ s∂ = 1B(A) (11)

in ∂ for chain maps. Let ∂0(a[]) = []ε(a), and s−1 : R - B0(A) =
A be given by s−1(r) = []σ(r). The formula (11) then inductively
determines ∂n for all n ≥ 1. It is straightforward to derive the formula

∂([a1| . . . |an]) = a1[a2| . . . |an] +
n−1∑
j=1

(−1)j [a1| . . . |ajaj+1| . . . |an]

+ (−1)n[a1| . . . |an−1]ε(an) (12)
(13)

(extend A-linearly over all of B(A)). In fact, it is not hard to prove
that ∂2 = 0 so that we have a free resolution of the A-module R (via
augmentation). In fact, it is not hard to see from the definitions that
we actually have an explicit SDR

R
s−1-
�

ε
(B(A), s). (14)

12

3.4.1 Functional Cocycles Let G be a group and A = RG be the
group ring. The dual of the bar construction

C(G) = HomA(B(A), A) (15)

is a complex whose cohomology is the cohomology of G (as defined in
section (3.3). It is not hard to see that

Cn(G) = HomR(B̄n(A), R) ∼= Fn (16)

where Fn = {Gn f- R | f(g1, . . . , gn) = 0, if gι ∈ R for some ι}.
See [34] for details. We shall identify Cn(G) with such functions from
Gn to R. Note that the differential in this context is given as follows.
If f : Gn - R, then δ(f) : Gn+1 - R is the function

δ(f)(g1, . . . , gn+1) =
f(g2, . . . , gn+1) +

∑
(−1)kf(g1, . . . , gkgk+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn) (17)

The algorithms given in the next sections can be used to explicitly
compute such functional cochain representatives for the cohomology
of any finite p-group. In fact, as we will see, the algorithm actually
produces polynomials that represent cocycles.

3.5 The Comparison Theorem

The comparison theorem in homological algebra [34], [3] states that
if X and Y are and two projective resolutions of M over A, they are
chain homotopy equivalent, i.e. there are chain maps f : X - Y
and g : Y - X such that fg and gf are both chain homotopy
equivalent to the identity map. We will need a constructive version of
this for free resolutions that essentially goes back to [4]. In fact, we
are interested only in the case when Y = B(A) and fg = 1X , so that
we actually obtain an SDR. The explicit formulae and discussion were
given in [33]. We will simply repeat the formulas here for the reader’s
convenience.

Given a resolution of the form X = A ⊗R X̄ - R - 0 with
an explicit contracting homotopy ψ : X - X, construct maps ∇ :
X - B(A), f : B(A) - X, and φ : B(A) - B(A) inductively
as follows:

∇0 = 1A, f0 = 1A, φ0 = 0, (18)

13

and for n > 0, extend A-linearly the map defined on X̄ given by

∇n = sn−1∇n−1dn (19)

and extend A-linearly the maps defined on B̄(A) given by

fn = ψn−1fn−1∂n, (20)

φn = sn(1B̄n(A) −∇nfn − φn−1∂n). (21)

Conditions under which ∇ constructed this way is one-one are given
in [35]. When they are satisfied, the maps above produce an SDR as
is discussed in [33]. In this paper, it will be clear that the maps ∇
we define below are one-one by construction (and hence SDR data
results).

The formulae for f and φ can easily be worked out ([33]) as follows.
The A-linear map f is given recursively by

f([]) = 1, f([b1| . . . |bn]) = ψ(b1f([b2| . . . |bn])). (22)

The A-linear map φ is given recursively by

φ([]) = 0, φ([b1| . . . |bn]) = s∇f([b1| . . . |bn]) + s(b1φ([b2| . . . |bn])).
(23)

3.6 The Minimal Resolution of IFnp Over IFp

Let G+ be the underlying abelian group of IFp. H. Cartan [4] gave
a resolution of IFp over IFpG

n
+ and an explicit contracting homotopy

which we will recall in this subsection. First, we will need to recall
some standard algebras. The ordinary polynomial algebra is denoted
by IFp[t1, . . . , tn].

3.6.1 The Divided Power Algebra The divided power algebra
Γp[y], for an even degree generator y has IFp-basis {γi(y)|i = 0, . . .}.
The multiplication is determined by extending

γi(y)γj(y) =

(
i+ j

j

)
p

γi+j(y)

bilinearly over all of Γp[y] where
(i+j
j

)
p

is the binomial coefficient mod
p. Note that γ0(y) = 1 and, by convention, we write y = γ1(y). For
even degree generators, we define

Γp[y1, . . . , yn] = Γp[y1]⊗ . . .⊗ Γp[yn]

14

(tensor product algebra). We omit writing the tensor sign for elements
when convenient. The degree is given by |γi1(y1) . . . γin(yn)| =

∑
iν |yν |.

3.6.2 The Exterior Algebra The exterior algebra Λp[x], for an
odd degree generator x, is the quotient IFp[x]/(x2). For odd degree
generators, x1, . . . , xn, we take

Λp[x1, . . . , xn] = Λp[x1]⊗ . . .⊗ Λp[xn].

We also omit writing tensor signs for elements when convenient. Note
that every element of Λp[x1, . . . , xn] can be written uniquely as an IFp-
linear combination of elements of the form xi11 . . . x

in
n where iν ∈ {0, 1}

and |xi11 . . . xinn | =
∑
iν |xν |.

3.6.3 Cartan’s “Little Resolution” in Any Characteristic Note
first of all that as an algebra, IFpG+

∼= IFp[t]/(tp − 1). We assign all
elements the degree zero.

Let C = IFpG+ ⊗ Γp[y] ⊗ Λp[x] (as an algebra) where |y| = 2
and |x| = 1. Again we omit tensor signs in writing elements when
convenient. Extend the grading to all of C in the usual way, i.e. |cc′| =
|c|+ |c′|.
C is augmented by the map ε given by extending the assignments

ε(t) = 1, ε(x) = 0, and ε(γi(y)) = 0

to an algebra map to IFp. Note that the unit map is σ(r) = r ⊗ 1⊗ 1.
The differential d on C is the unique IFpG+-linear graded derivation

determined by

dt = 0, dx = t− 1, dγi(y1) = t[p] ⊗ γi−1(y)⊗ x (24)

where we use the notation t[k] = tk−1
t−1 in general.

A contracting homotopy ψ for C is the IFp-linear map given by

ψ(tk ⊗ γi(y)⊗ xη) = [k > 0][η = 0] t[k] ⊗ γi(y)⊗ x
+ [k = p− 1][η = 1] 1⊗ γi+1(y)⊗ 1, (25)

where we use the Kronecker-Iverson notation [b], which evaluates to 1
for Boolean expressions b having value true, and to 0 for those having
value false, see [11].

15

Note that IFp[t1, . . . , tn]/(tp1−1, . . . , tpn−1) ∼= IFp[t1](tp1−1)⊗ . . .⊗
IFp[tn]/(tpn − 1) ∼= IFpG

n
+. Using tensor product formulae, we get a

resolution C(n) over IFpG
n
+ of the form

(IFpG
n
+ ⊗ Γ [y1, . . . , yn]⊗ Λp[x1, . . . , xn], d(n))

ε(n)
- IFp

- 0

using the fact that

IFpG
n
+ ⊗ Γp[y1, . . . , yn]⊗ Λp[x1, . . . , xn] ∼= ⊗nC.

Here ε(n) = ⊗nε and d(n) is the pullback of the tensor product differ-
ential

d⊗
n

=
n∑
ν=1

1⊗ . . .⊗ 1︸ ︷︷ ︸
ν−1

⊗ d⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
n−ν

. (26)

and ψ(n) is the pullback of the tensor product homotopy given by

ψ⊗
n

=
n∑
ν=1

π ⊗ . . .⊗ π︸ ︷︷ ︸
ν−1

⊗ψ ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
n−ν

, (27)

or by the reverse variant

ψ⊗
n

=
n∑
ν=1

1⊗ . . .⊗ 1︸ ︷︷ ︸
ν−1

⊗ψ ⊗ π ⊗ . . .⊗ π︸ ︷︷ ︸
n−ν

(28)

(or in fact, by any of the other permutations possible) where π = σε :
C - C. See [33, 2.3.2].

We will give a compact formula for the contracting homotopy
ψ(n). Note first, that after fixing the position ν of the occurrence
of ψ, we get a number of conditions for the appearances of non-
zero terms by considering the positions 1 ≤ µ < ν where π occurs:
π(taµµ γiµ(yµ)xηµµ) = [iµ = 0][ηµ = 0] and hence it kills the element from
the group algebra. Then we have to impose the conditions of ψ from
(25) at position ν which can be associated to two sums. Hence, we
immediately get

ψ(n)(taγi(y)xη) = Σ0 +Σ1 (29)
where

Σ0 =

n∑
ν=1

(
ν−1∏
µ=1

[iµ = 0][ηµ = 0]

)
[aν > 0][ην = 0]

aν−1∑
κ=0

tκeν+λν(a)γλν−1(i)(y)xeν+λν(η),

Σ1 =

n∑
ν=1

(
ν−1∏
µ=1

[iµ = 0][ηµ = 0]

)
[aν = p− 1][ην = 1] tλν(a)γeν+λν−1(i)(y)xλν(η)

16

and where we define

λν(a1, . . . , an) = (0, . . . , 0, aν+1, . . . , an)

for 1 ≤ ν ≤ n and we recall that eν is the νth standard basis vector in
dimension n. Our programs use exactly these formulae and definitions
we have just given.

Summing up we have a resolution C(n) of IFp over IFpG
n
+ and in

fact, an SDR

IFp

σ-
�
ε

(C(n), ψ(n)).

Note that, in fact, C(n) is a minimal resolution, i.e. the differential in
IFp ⊗IFpGn+

C(n) vanishes. This is easy to see from the explicit form of
the differential. Thus, in fact,

H∗(IFpG
n
+) ∼= IFp ⊗IFpGn+

C(n) ∼= Γp[y1, . . . , yn]⊗ Λp[x1, . . . , xn] (30)

(as is well-known).
In the case of p = 2 this construction can be simplified.

3.6.4 Cartan’s Little Resolution in Characteristic 2 In char-
acteristic 2, we can define Γ2[x] for elements of any degree using the
same multiplication formula as in the case of odd primes. Note then
that if |y| = 2 and |x| = 1, we have

Γ2[y]⊗ Λ2[x] ∼= Γ2[x]. (31)

An explicit algebra isomorphism is given by γi(y)⊗xη - γ2i+η(x) as
is easily verified. By tensoring, this generalizes to the n-variable case
for n ≥ 1. Thus, the underlying vector space for the minimal resolution
of IF2 over IF2(G+) is C = IF2(G+)⊗Γ2[x] (G+ is the underlying group
structure of IF2 in this case). The differential transfers over as

da = 0, dγi(x) = (t+ 1)γi−1(x) (32)

for a ∈ IF2(G+) and γi(x) for i ≥ 1. This follows from (24) and the
fact that t+ 1 = t− 1 = t[2].

As before, we obtain the resolution C(n) = IF2G
n
+⊗Γ [x1, . . . , xn] of

IF2 over IF2(G+)[n] by tensoring C with itself n times. Thus, we have
the usual tensor product formula for the differential and we have the

17

tensor product homotopy ψ(n) by formula (28). Note that in this case,
we have ak = [ak > 0]. Since we will also have an explicit need of the
formula in Sect. 6, we present it here.

ψ(n)(ta1
1 . . . tann γj1(x1) . . . γjn(xn)) =

n∑
k=1

(
n∏

p=k+1

[jp = 0]

)
akt

a1
1 . . . t

ak−1
k−1 γj1(x1) . . . γjk−1(xk−1)γjk+1(xk). (33)

3.6.5 Splitting Off of the Bar Construction Let A = IFpG
n
+ in

this section. The minimal resolutions given above split off of the bar
construction in the terminology used in [33]. In other words, we have
an SDR

C(n)
∇(n)
-

�
f (n)

(B(A), φ(n)) (34)

for each n ≥ 1. The maps involved are given by the general for-
mulae (18–23). But more can be said. Its not hard to see that B(A)
can be given an algebra structure ∗. The definition is inductive. In
degree 0, B0(A) is just A and we take multiplication ∗ to be from
this algebra. Inductively, on reduced elements x, y ∈ B̄(A), we take
x ∗ y = s(∂(x) ∗ y + (−1)|x|x ∗ ∂(y)). With this, B(A) is a differential
graded commutative algebra (this is true for any commutative alge-
bra A). The recursive definition of ∇(n) given by (19) makes it into
a one-one map of differential graded algebras (see [4]). Thus, ∇(n) is
completely determined on the exterior algebra part of the minimal
resolution by ∇(n)(xi) = [ti − 1].

Still more can be said. Again, following Cartan in [4], one can
define a divided power structure in B(A) as follows. For p an odd
prime and x ∈ B(A), an even degree reduced element, define γ0(x) = x
and inductively γi(x) = s(γi−1(x) ∗ ∂(x)). With this definition, it is
also not hard to see that the map ∇(n) preserves divided powers, i.e.
that ∇(n)(γi(yj)) = γi(∇(n)(yj)).

When p = 2, the formula γi(x) = s(γi−1(x) ∗ ∂(x)) is valid for x of
any degree and it follows immediately that

A⊗ Γ2[x1, . . . , xn]
∇(n)
- B(A)

is the unique multiplicative extension of the map

∇(n)(γi(xj)) = [tj | . . . |tj] (i times). (35)

18

4 Main Theorems

Theorem 3. Let G be a finite p-group and let A be its augmented
group ring over IFp. There is a free resolution

(A⊗ Γp[y1, . . . , yn]⊗ Λp[x1, . . . , xn], d) - IFp
- 0 (36)

of IFp over A. Furthermore, there is an SDR

(A⊗ Γp[y1, . . . , yn]⊗ Λp[x1, . . . , xn], d)
∇
-
�
f

((B(A), ∂), φ). (37)

If p = 2, this simplifies. In this case, there is a resolution

(A⊗ Γ2[x1, . . . , xn], d) - IF2
- 0 (38)

of IF2 over A and there is an SDR

(A⊗ Γ2[x1, . . . , xn], d)
∇
-
�
f

((B(A), ∂), φ) (39)

These resolutions and strong deformation retracts can be constructed
with algorithm 5.4.

Note that we do not claim that the differential is a derivation of the
obvious algebra structure in either case.

One can iterate Wall’s construction of twisted tensor product res-
olutions [38] to see why such resolutions exist, but that procedure
requires making choices at various stages as explained below. In Sect.
7.1, we will prove however that up to conjugation by a chain isomor-
phism, any resolution obtained this way is given by our algorithm.

4.1 Twisted Tensor Product Resolutions

Given a group extension

1 - K - G̃ - G - 1

and two resolutions

IFpK ⊗X - IFp
- 0, IFpG⊗ Y - IFp

- 0,

19

the procedure in [38] constructs a differential on IFpG̃⊗X ⊗Y , giving
a resolution of IFp over IFpG̃, crucially using the fact that, as vector
spaces, IFpG̃ ∼= IFp(K × G). The construction is done in stages and
several choices (which are abstractly known to be possible) have to be
made. Now one can see how to get resolutions as above by induction.
For K = (IFp,+), take the minimal resolution. If the theorem is true
for all groups of order pn and K ′ is of order pn+1, then since K ′ is
an extension of a group K of order pn by IFp, we can use the Wall
construction on the resolution of the theorem over K and the minimal
resolution over IFp. Clearly the result is isomorphic to a resolution of
the form of the theorem for K ′.

Since iterating the construction above (essentially up through the
lower central series) compounds the number of choices that have to
by made considerably, it would be quite nice if there were a uniform
procedure, suitable for programming, that could be given. In fact, the
algorithm we mentioned in the introduction from [32] and which we
implement in this paper does exactly that. We will discuss the rela-
tionship with the iterated twisted tensor product resolution in Sect.
7.1.

Finally, we mention that using the methods of this paper a stronger
theorem actually holds. We have

Theorem 4. Let G be a finite p-group and let A be its augmented
group ring over IFp. Let M be an A-module. There is a free resolution

(A⊗ Γp[y1, . . . , yn]⊗ Λp[x1, . . . , xn]⊗M,d) - IFp
- 0. (40)

of M over A. Furthermore, there is an SDR

(A⊗ Γp[y1, . . . , yn]⊗ Λp[x1, . . . , xn]⊗M,d)
∇
-
�
f

((B(A,M), ∂), φ).

Note that this uses the two-sided bar construction [32, §3]. There
is, of course, the obvious simplification for p = 2. We will however,
only discuss the details of the version for M = IFp in this paper.

4.2 Complexes for Cohomology

By taking the A-linear dual of the onto map f from the theorems, we
obtain an embedding of the linear dual over A of the small resolution
into the dual C(G) of the bar construction B(A) (3.4.1).

20

Now note that for any A-module X, we have

X∗ = HomA(A⊗X, IFp) ∼= HomIFp(X, IFp).

Furthermore, it is well-known (e.g. [4]) that

HomIFp(Γp[y1, . . . , yn]⊗ Λp[x1, . . . , xn], IFp)
∼= IFp[w1, . . . , wn]⊗ Λp[z1, . . . , zn]

and
HomIF2(Γ2[x1, . . . , xn], IF2) ∼= IF2[z1, . . . , zn].

as algebras (in fact, as Hopf-algebras), where {w1, . . . , wn} is dual to
{y1, . . . , yn} and {z1, . . . , zn} is dual to {x1, . . . , xn}. We do not claim
that the corresponding differential δ∞ is a derivation. In fact, generally
this is false. There is however an algebra structure for which δ∞ is a
derivation. The discussion of this and its consequences is beyond the
scope of the current paper however. The interested reader should see
[26], [14]. We have the immediate

Corollary 5. Let G be a finite p-group. If p = 2, let X∗ = IF2[z1, . . . , zn]
otherwise let X∗ = IFp[z1, . . . , zn] ⊗ Λp[w1, . . . , wn]. There is a differ-
ential δ∞ on X and an embedding X∗ ⊂ - C(G) which is a chain
homotopy equivalence. Hence H∗(G) ∼= H∗(X∗, δ∞).

As a consequence, given explicit cocycles in X∗, we can produce
explicit functional cochains on the group G. Examples will be given in
Sect. 8 below.

5 Explicit Algorithms

Let G be a finite p-group of order pn and A be its augmented group
ring over IFp. We outline and detail the algorithms from [28], [33], [31],
and [32] for constructing free resolutions. We then look specifically at
the case of finite p-groups.

5.1 Perturbation Principle

The idea behind the algorithms is the following. Let A be an algebra
over a field k and suppose there is free A resolution B(A,M)

ε- 0 for
all A-modules M where B(A,M) = A⊗B̄(A,M) for some vector space

21

B̄(A,M). For example one can take B to be the bar construction. We
will say that an algebra A is a perturbation of an algebra A0 if there is
a k-linear isomorphism A ∼= A0. We suppose that if A is a perturbation
of A0, there is a vector space isomorphism B(A,M) ∼= B(A0,M), as
is the case with the bar construction. Thus, B(A0,M) supports two
differentials. The first is the differential d, corresponding to A0 and the
second, d′ is the pullback to B(A0,M) of the differential on B(A,M).
Thus, if there is an SDR

(X, dX)
∇-
�
f

(B(A0,M), φ),

we can use t = d′ − d as an initiator and see if the perturbation
formulae (3.2) converge. If they do, we obtain a resolution over A as
small as the given one over A0. There are various contexts in which
a given algebra may be realized as a perturbation of another algebra
and we give two examples below.

5.2 Polynomial Groups Laws Revisited

Suppose that G is given in the form of Sect. 2.4, i.e. we have G = IFp
n

(as sets) with groups law ρ that satisfies (1). In this case, we have
generators {t1, . . . , tn} for G such that every element of G has a unique
“normal form” ta1

1 . . . tann and the multiplication in G is given by

ta1
1 . . . tann · t

b1
1 . . . tbnn = ta1+b1+µ1

1 . . . tan+bn+µn
n

where µi = µi(a1, . . . , ai−1, b1, . . . , bi−1). On the same underlying set,
we have the elementary abelian group law which we write as

ta1
1 . . . tann + tb11 . . . tbnn = ta1+b1

1 . . . tan+bn
n .

As before write Gn+ for this group. We thus have two group laws on
the same underlying set and so we have two different differentials (12)
on B(IFpG

n
+), viz., the differential ∂ for G and the differential ∂+ for

Gn+. We set T = ∂ − ∂+. Thus, using the notation ta = ta1
1 . . . , tann , we

have an initiator (3.2)

T [ta1 | . . . |tak] =

k−1∑
i=1

([ta1 | . . . |tai ·tai+1 | . . . |tak]−[ta1 | . . . |tai+tai+1 | . . . |tak]). (41)

Provided the maps given in the perturbation lemma converge, we
obtain a resolution of IFp over A. If G is not presented in the form
above, it is more complicated to obtain an initiator. We describe this
next.

22

5.3 Using the Isomorphisms of Sect. 2 for an Initiator

In general, since we are over a field, we have that for any filtration
of the algebra A, A is a perturbation of E0(A) in the sense defined
above. Let G be a finite p-group and A = IFpG. By definition, we have
IFpG

n
+
∼= IFp[t1, . . . , tn]/(tp1 − 1, . . . , tpn − 1). But the latter algebra is

clearly isomorphic to IFp[t1, . . . , tn]/(tp1, . . . , t
p
n) since (t − 1)p = tp −

1 mod p. We have a sequence of vector space-isomorphisms

E0(V(grpG)) ∼= V(grpG) ∼= E0(IFpG) ∼= IFpG (42)

using the observation above and the isomorphism of Theorem 2. But
we also have the p-modular Birkhoff-Poincaré-Witt theorem 1 that
gives an isomorphism

IFp[t1, . . . , tn]/(t1p, . . . , tnp) ∼= E0(V(grpG)) (43)

Putting all these maps together, we have an explicit realization of
A = IFpG as a perturbation of IFpG

n
+ by

Ξ : IFpG
n
+

- IFpG (44)

and we can form an intitator as described above. Again, provided the
maps given in the perturbation lemma 3.2 converge, we obtain a res-
olution of IFp over A.

We will give an indication of why the maps in the perturbation
lemma converge in these cases only for the case p = 2. The general case
is similar. Also note that the isomorphism just given is quite similar
to the situation in Sect. 5.2. In essence, by refining the mod-p lower
central series to have cyclic factors and pulling back the generators to
G, we obtain a set of generators {t1, . . . , tn} for the group G so that
every element has the unique (normal) form ta1

1 . . . tann and clearly, the
normal form of the product of two such elements satisfies (1).

5.4 The Algorithm

Note that in what follows, improvements for the special case p = 2 can
easily derived by using 3.6.4.

INPUT: – A group G of prime power order pn given in some compu-
tationally accessible form and its group algebra A = IFpG
over the prime field IFp with p elements.

23

– The elementary abelian group Gn+ = (IFnp ,+) of order pn,
and its group algebra A+ = IFpG

n
+.

step 1. Construct an IFp-isomorphism Ξ : A+
- A. If G is given as

a perturbation of Gn+ by a polynomial group law ρ as in 2.4,
then set Ξ to be the identity on the underlying sets, which
are equal and by means of 5.2 proceed with step 2. Otherwise
by means of 5.3 construct Ξ as by determining the p-modular
lower central series

G = Z1 ≥ Z2 ≥ . . . ≥ Zm ≥ Zm+1 = 1,

according to 2.1, refining it to have cyclic factors, exhibit a
generator of each factor and pull them back to get a sequence
t1, . . . , tn of generators for G. Ξ then maps the generator cor-
responding to the unit vector ei in Gn+

∼= (IFnp ,+) to ti.

step 2. Construct the bar constructions (B(A+), ∂+) and (B(A), ∂)
and according to 3.4, form the IFp-vector space isomorphism

Θ : (B(A+), ∂+) - (B(A), ∂)

induced by Ξ and transfer the differential ∂ by ∂′ := Θ−1∂Θ
as a second differential on B(A+). Define the initiator T :=
∂+ − ∂′ : B(A+) - B(A+) for the transfer process in the
perturbation lemma 3.2. Furthermore, construct the SDR

IFp

s−1-
�

ε
(B(A+), s).

step 3. Construct Cartan’s little resolution

C = (A+ ⊗ Γp[y1, . . . , yn]⊗ Λp[x1, . . . , xn], d)

according to Sect. 3.6.3 for the elementary abelian group Gn+
by constructing the divided power algebra Γp[y] with n gener-
ators (3.6.1) and the exterior power algebra Λp(x) generated
by n generators, see 3.6.2.

step 4. Form the SDR (see 3.6.5)

C(n)
∇(n)
-

�
f (n)

(B(A+), φ(n)).

24

step 5. Use (5)–(8) in 3.2 to recursively define maps

∂+
k , ∇

(n)
k , f

(n)
k , and φ

(n)
k

for k = 1, . . .

OUTPUT: A resolution (C, ∂∞) of IFp over the group algebra IFpG and
an SDR

(C, ∂∞)
∇-
�
f

((B(A+), ∂), φ)

as the limit of the constructions in step 4.

Note that the tensor products over IFp can be realized algorithmically
by designing a data type for divided power algebras and exterior alge-
bras, which allow arbitrary commutative rings as coefficient domains.

6 Details of the Perturbation for p = 2

As before, let Gn+ = IFn2 be the elementary abelian group 2n and let
A+ = IF2G

n
+. We want to examine the SDR of the bar construction

and the minimal resolution in more detail. By (31–33), we may write
this as

(A+ ⊗ Γ2[x1, . . . , xn], d)
∇-
�
f

((B(A+), ∂), φ) (45)

where

∇(ta1
1 . . . tann γj1(x1) . . . γjn(xn)) = ta1

1 . . . tann γj1([t1]) ∗ . . . ∗ γjn([tn])) (46)

and f and φ are generally given by (22) and (23).
Let T be the initiator from the last section. We need to see that

T φ is nilpotent in each degree. We will indicate why this is true in
degree one. The higher degrees are similar.

In degree one we have

f([ta1
1 . . . tann]) =

n∑
i=1

ait
ai+1

i+1 . . . t
an+1

n+1 γ1(xi) (47)

Note that for a uniform formula, we have taken tn+1 = 1 here. See
(33) above. Using this formula for f and (23) we have

φ([ta1
1 | . . . |t

an
n]) =

n−1∑
i=1

ai[t
ai+1

i+1 . . . tann | ti]. (48)

25

Assume now that we have a finite 2-group G and let A = IF2G.
We assume that G is of the form in Sect. 2.4. So the group law ρ
is a polynomial function that satisfies (1). We want to examine the
perturbation formulae more closely in this situation.

Thus by (41) and (48), we immediately have

T φ([ta1
1 . . . tann]) =

n−2∑
i=1

ai([t
ai+1

i+1 . . . tann · ti] + [tit
ai+1

i+1 . . . tann]). (49)

Note that the last term in the sum vanished since tn is central as
follows from (1). Now note that in the terms above,

t
ai+1

i+1 . . . tank · ti = tit
µi
i . . . tµnn

where i ≤ n− 2 which again follows from (1). Thus, every term in the
sum above is of the form tit

bi+1

i . . . tbnn for some bj ∈ {0, 1}. We will
say that such elements in G have rank i. Thus, it suffices to see that
T φ is nilpotent on elements of rank i for i ≤ n − 2. The proof is by
downward induction.

If z = tn−2t
bn−1

n−1 t
bn
n is any rank n− 2 element, then we have

T φ([z]) = [tbn−1

n−1 t
bn
n · tn−2] + [tn−2t

bn−1

n−1 t
bn
n].

but tbn−1

n−1 t
bn
n · tn−2 = tn−2t

bn−1

n−1 t
bn+q
n where q = q(bn−1) and q is a

polynomial over IF2 with no constant term. In fact, from (1), it is clear
that

q(bn−1) = µn(0, . . . , 0, bn−1, 0, . . . , 0, 1, 0).

We thus have T φ(z) = [tn−2t
bn−1

n−1 t
bn+q
n] + [z] and we need to consider

cases.
If bn−1 = 0, then clearly q = 0 and the terms above cancel. If bn−1 =

1, then if q = 0, the terms cancel once more. If q = 1 in this case, we
have z = tn−2tn−1t

bn
n and T φ([z]) = [w]+[z] where w = tn−2tn−1t

bn+1
n ,

but then (T φ)2([z]) = [tn−2tn−1t
bn+1+1
n]+[w]+[w]+[z] = 0. The proof

for the inductive step is similar.

7 Some Observations and Consequences

7.1 Relationship to Twisted Tensor Product Resolutions

Consider again the twisted tensor product construction of Sect. 4.1.
We have

26

Theorem 6. Let G be a finite p-group and let (X, d) - IFp
- 0

be the twisted tensor product resolution over G from Sect. 4.1. We
have that (X, d) is chain isomorphic to the resolution given by the
perturbation lemma using the algorithm from Sect. 5.

Proof. We use the uniqueness theorem from [1]. We have set up an
explicit transference problem (see [1] for terminology), in this case, in
Sect. 5. Since the twisted tensor product differential is a solution to
this problem, the main theorem of [1, §5] shows that we have a chain
homotopy isomorphism so that the differential obtained by iterating
the construction in [38] is conjugate to the differential obtained via the
perturbation formulae.

Note that, of course, by the comparison theorem, all such resolu-
tions must be chain homotopy equivalent. This theorem gives a much
stronger statement. In essence, up to the choices made in [38], the
construction is exactly the same as the one given uniformly by the
perturbation lemma.

7.2 An Explicit SDR and an Explicit Contracting
Homotopy

Using the algorithms from Sect. 5, we obtain an SDR

(C(n), ∂∞)
∇(n)
∞-

�

f
(n)
∞

((B(A), ∂), φ(n)
∞). (50)

but more can be said.
It turns out that this construction actually provides an explicit

contracting homotopy for (C(n), ∂∞). This can be seen from the general

Lemma 7. Let X be a resolution of R over A and suppose that we
have an SDR

X
∇
-

�
f

(B(A), φ).

Then fs∇ is a contracting homotopy for X.

27

7.3 2-Cocyles and Codes

For any group G, the special case of the cochain differential (17) for
i = 2 is of some interest. A function f : G×G - IFp that satisfies
δ(f) = 0 is said to be a 2-cocycle. I.e. f is a 2-cocycle if and only if

f(y, z)− f(xy, z) + f(x, yz)− f(x, y) = 0 (51)

for all x, y, z ∈ G. As was pointed out in section 2, every p-group is
built up inductively from IFp by a sequence of 2-cocycles.

Using classical methods involving the universal coefficient theorem,
Schur multipliers, and transgression, methods for finding 2-cocycles
representing 2-dimensional cohomology classes can be worked out in
some cases. See [7], [8] and [17]. Also see [6]. Connections between
combinatorial design theory and 2-cocycles has been pointed out in
[15] (also see [16] for errata). Connections between coding theory and
2-cocycles have also been made in [18].

Evaluating functional 2-cocycles on all pairs of the group elements
yields a matrix with entries from IF2 in case of p = 2. In light of
the connection between cocycles and combinatorics just mentioned, it
seems useful to have a means to generate whole families of functional
cocycles to examine for various properties. Our algorithm above ac-
tually can calculate explicit representative cocycles (and hence codes)
directly for any finite p-group. An example is given in 8.2.4.

7.4 Universal Cochain

Let G be a finite p-group for which the group law is given by a poly-
nomial as in (1). We want to examine Cor. 5 in more detail. First
of all, we have an onto map f̄∞ : B̄(IFpG) - X where X =
Γp[y1, . . . , yn]⊗Λp[x1, . . . , xn] in case p is odd and X = Γ2[x1, . . . , xn]
when p = 2 by “reducing” the SDR from Theorem 3, i.e., by tensoring
the objects and maps over IFpG with IFp. We claim the

Lemma 8.
f̄∞[ta1 | . . . |tak] =

∑
i,ε

λi,εγi(y)xε (52)

where aκ = (a1,κ, . . . , an,κ), taκ = t
a1,κ

1 . . . t
an,κ
n , i = (i1, . . . , in), ε =

(ε1, . . . , εn), γi(y) = γi1(y1) . . . γn(yn), xε = xε11 . . . xεnn , and

λi,ε = λi,ε(a1, . . . , ak) (53)

28

is a polynomial in the coordinates aν,κ. As such, we may think of the
expression (52) as lying in IFp[a1,1, . . . , an,i]/(apν,κ − aν,κ)⊗X.

The proof is quite easy once one realizes that f∞ is constructed from
the maps f and φ in the SDR (34) and the initiator T from Sect.
5. using only arithmetic operations. Its clear that f , T , and φ can
be expressed in terms of polynomials, so the lemma follows. We will
denote this polynomial expression by f

(i)
∞ and call it the universal i-

cochain. As an immediate consequence of all this, we have

Corollary 9. Let α =
∑
j,µ αj,µγj(z)w

µ be any i-cochain in X∗ =
IFp[z1, . . . , zn]⊗Λp[w1, . . . , wn]. The corresponding functional i-cochain

f (i)
∞ (α) : Gi → IFp

is given by

f (i)
∞ (α)(ta1 , . . . , tak) =

∑
αi,ελi,ε(a1, . . . , ak).

Obviously, if α is a cocycle, so is f (i)
∞ (α), and in this way, we obtain

polynomial representatives for cohomology classes.

Explicit examples of such universal cochains will be given in the
next section.

8 Implementations and Computations

8.1 Implementations in AXIOM

The broad variety of algebraic data types required to realize and im-
plement the the extensions of the algorithm from 5.4 seen in [32] in its
most general setting is a topic of interest itself (see [5]). For the case of
a given polynomial group law of the form (2.4) we have implemented
the algorithm in the computer algebra system AXIOM (in arbitrary
characteristic) and with focus on p = 2 and applications to coding
theory. For the general case when the map Θ has to be considered, we
also have written a program in the group theory system GAP as a pre-
processing step when the finite p-group is given by power-commutator
relations. The source code and some examples can be downloaded from
the authors’ homepages

http://www.bangor.ac.uk/~mas019/

or

http://www.hd.shuttle.de/grabm/jg-top.html.

29

8.1.1 Implementations for Arbitrary Characteristic The nec-
essary structure for elementary abelian groups of order pn, written
multiplicatively, is given by the domain MWEA MultiplicativelyWrit-
tenElementaryAbelian, and p-groups given by a polynomial group law
are realized in PPGP PolynomialPGroup (see 2.4).1 All kinds of graded,
differential and augmented structures are provided, e.g. GRALALG
GradedAugmentedLeftAlgebra. 2 The multiplicative structure of a monoid
ring is given by the AXIOM domain constructor MRING MonoidRing,
which was enhanced. 3 The bar construction (see 3.4) is implemented in
the domain BAR BarConstruction 4. Its basis over the group (monoid)
ring has the infinite basis consisting of all lists of group elements.

We have constructed exterior algebras using the category EXTALGC
ExteriorAlgebraCategory, and the domain EXTALG ExteriorAlgebra which
requires the package EXMER ExMerge. 5 The algebra of divided powers
is implemented in the domain DIVPOW DividedPowerAlgebra. 6 The
full power and beauty of AXIOM is used to construct a domain for
Cartan’s little resolution (see 3.6) by combined use of the domain con-
structors ExteriorAlgebra MonoidRing, PrimeField, DividedPowerAlgebra
and yields the constructor CLR CartanLittleResolution. 7 The functions
(see 3.1.2) of the strong deformation retract for a p-group given by a
polynomial perturbation of the elementary abelian group are given in
the package SDRPG StrongDeformationRetractionPGroup. 8

8.1.2 Implementations in Characteristic 2 In this case, the
bar construction BarConstruction9 is implemented using the construc-
tor FreeModule10 with coefficient ring R of category AssociativeAlgebra
SingleIntegerMod 2 and with basis the type List ElementaryCommuta-
tiveGroup(2, n, R). The dimension n: SingleInteger is the first argument
to the bar constructor, while R is either simply SingleIntegerMod 2 itself
or an extension of it. This allows symbolic computation with generic

1 The code is in ppgp.spad
2 The code is in graded.spad.
3 The code is in mring.spad.
4 The code is in bar.spad
5 The code is in extalg.spad.
6 The code is in divp.spad
7 The code is in cartan.spad
8 The code is in sdrpg.spad
9 This is coded in file twococ2.as.

10 This is coded in file freemod.as.

30

group elements, e.g. SymbolicExponents11. The last argument to the bar
constructor is the perturbation group law of type (Array R, Array R)
- Array R, which describes the group of order 2n as a perturbation

of the elementary abelian group. The implemented functions include
t2 and t3 which implement the initiator T (49) in degrees 2 and 3, both
on the basis type and on the bar construction. Similarly the contract-
ing homotopy φ+ of the strong deformation retract of Cartan’s little
resolution in its characteristic 2 variant is realized in degrees 1 and
2 by phi1 and phi2. Finally, the perturbation lemma iteration is done
for degree 1 and 2 in the code for t phi iteration1 and t phi iteration2.
A function basisOfDegree returns lists of basis elements as elements of
the bar construction.

The necessary functions for

C(n)
∇(n)
-

�
f (n)

(B(A), φ(n))

for the given 2-group (see (3.6.5)) are implemented in StrongDeforma-
tionRetraction2Group12, which has the same first 3 arguments as the
implementation of the corresponding bar construction. Moreover, the
fourth argument is the group algebra and has to be given as S: As-
sociativeAlgebra R13. The embedding ∇(n) is implemented as nabla for
degrees 1, 2, and 3 or for exactly one variable in arbitrary degree. The
projection f (n) is implemented as f1 and f2 for the degrees 1 and 2
and on basis elements as well as linearly extended on arbitrary bar
elements. The new differential is implemented as d and realized by
5 functions: dOnBasisOfDegree2 and dOnBasisOfDegree3 are constants
which store the results on basis elements of degree 2 and 3, setTable-
ForDegree sets up the constant hashtable (a data structure set up for
efficient storage and retrevial) dTable for these degrees, while d extracts
the values from the hashtable. The new projection is implemented as f
and gained as the result of the transfer problem. It is implemented for
degree 1 and 2 in f infinity1 and f infinity2, while the function lambda
is an internal help function.

The package DualComputations14 has the same arguments as Strong-
DeformationRetraction2Group. Here Cartan’s Little Resolution C is im-
11 This is coded in file pgroups.as.
12 This is coded in file twococ2.as.
13 This is coded in file algebra.as.
14 This is coded in file twococ2.as.

31

plemented by DividedPowerBasisChar2(n, S, vx)15. The package exports
the constant lists d1 dual and d2 dual with entries from C. They con-
tain the values of the differential on the the (dual) basis of the cochain
complex HomIFp(Γ2[x1, ..., xn], IFp) (see 4.2 and 3.4.1). In addition the
function d dual implements its differential both for C or the type of its
canonical basis CB, defined to be DividedPowerBasisChar2(n, S, vx)16.
To be able to use linear algebra to determine the kernels and images,
the constants matrix d1 dual and matrix d2 dual return objects of Ma-
trix S17, where each row consists of the coefficients of the differential
applied to a dual basis element.

The package CocycleComputations18 has two arguments, the dimen-
sion n and the polynomial group law rho: (ASE, ASE) - ASE,
where ASE abbreviates Array SymbolicExponents n19. It conveniently
puts all pieces of computations together and exports cocycleRepresen-
tatives and secondCohomologyGroup. The second function takes the
polynomial group law (ASE, ASE) - ASE as its argument and re-
turns the a 2-tupel. The first component is the kernel of the differential,
the second component is the image of the differential for degree 2. This
can be conveniently used as argument for the function cocycleRepre-
sentatives, which returns a basis consisting of 2-cocycle representatives
as elements of the type SE.

8.2 Upper Triangular Matrices

We present results of executing the algorithm in Sect. 5 first for the
matrix groups UT3(IF2) and UT4(IF2) and then the group UT3(IF5).

Using spectral sequence methods, one could work out the ranks of
the cohomology of the groups given in this section. Indeed, this pro-
vides a check of our results. In fact, even though we obtain a complex
for computing the (co)homology of a group directly, it can be advanta-
geous to use the spectral sequence associated to it when the number of
generators is large and it is possible to interpret our results as giving a
closed form expression for the corresponding differentials [32]. Since we
obtain resolutions, we will however produce more than just cohomol-
ogy. In addition, when we want to obtain results about (co)homology,
15 This is coded in file divpow.as.
16 This is coded in file divpow.as.
17 This is coded in file matrix.as.
18 This is coded in file twococ2.as.
19 This is coded in file pgroups.as.

32

we can easily get (co)cycle representatives from our complexes using
the universal cochain from Sect. 7.4. This is illustrated in the last
example.

8.2.1 UT3(IF2) This group G is dihedral and the group law may be
written

(a1, a2, a3)(b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3 + a1b2).

Of course, it is straightforward to compute H∗(G, IF2) in this case
using the Lyndon-Hochschild-Serre spectral sequence. The result is
H∗(G, IF2) = R[z], the polynomial algebra in one variable z of degree
2 over the ring R = IF2[x, y]/(xy). Thus, H2 has dimension 3.

It is also quite easy to compute ∂̄∗∞,i for i = 1, 2 in this case. We
give only the non-zero differentials on the dual of the canonical basis:

x∗3 - (x1x2)∗ (54)
(x2x3)∗ - (x1γ1(x2))∗ (55)
(x1x3)∗ - (x2γ1(x1))∗ (56)

(γ2(x3))∗ - (x1γ1(x2))∗ + (x2γ1(x1))∗. (57)

Thus, representatives of the three cohomology classes in dimension two
are given by

α1 = (γ2(x1))∗, α2 = (γ2(x2))∗, α3 = (γ2(x3))∗+(x1x3)∗+(x2x3)∗.

The universal polynomial cochain is also easily computed. It is

f∞(a, b) = (a3b3 + a1a3b2 + a1b2b3)γ2(x3)
+a2b2γ2(x2) + a1b1γ2(x1)
+a1b2x1x2 + a1b3x1x3

so three cocycle representatives ci : G×G - IF2 are given by

c1(a, b) = a1b1

c2(a, b) = a2b2

c3(a, b) = a3b3 + a1a3b2 + a1b2b3 + a1b2 + a1b3.

33

8.2.2 The universal Cochain for UT4(IF2) The interested reader
can find further results for the example above as well as results for
UT4(IF2) at the author’s web sites (see Sect. 8.1), however we will list
the universal cochain for UT4(IF2) in degree 2 here. It is

a1b1γ2(x1) + a1b2γ1(x1)γ1(x2) + a1b3γ1(x1)γ1(x3) + a1b4γ1(x1)γ1(x4) +

a1b5γ1(x1)γ1(x5) + a1b6γ1(x1)γ1(x6) + a2b2γ2(x2) + a2b3γ1(x2)γ1(x3) +

(a2b4 + a1a2b2)γ1(x2)γ1(x4) + a2b5γ1(x2)γ1(x5) +

(a2b6 + a1a2b5)γ1(x2)γ1(x6) + a3b3γ2(x3) +

(a3b4 + a1b2b3 + a1a3b2)γ1(x3)γ1(x4) + (a3b5 + a2a3b3)γ1(x3)γ1(x5) +

(a3b6 + a1a3b5)γ1(x3)γ1(x6) + (a1b2b4 + a4b4 + a1a4b2)γ2(x4) +

(a4b5 + a2b3b4 + a2a4b3)γ1(x4)γ1(x5) + (a4b6 + a1a4b5 + a1b2b3b4 +

a1a3b2b4 + a3a4b4 + a1a4b2b3 + a1a3a4b2)γ1(x4)γ1(x6) + (a2b3b5 + a5b5 + a2a5b3)γ2(x5) +

(a5b6 + a3b4b5 + a1b2b3b5 + a1a3b2b5 + a1a5b5 + a3a5b4 + a1a5b2b3 + a1a2a3b2b3 +

a1a2b2b3 + a1a3a5b2)γ1(x5)γ1(x6) + (a1b5b6 + a3b4b6 + a1b2b3b6 + a1a3b2b6 +

a6b6 + a3a4b6 + a1a3b4b5 + a1b2b3b5 + a1a3b2b5 + a1a6b5 + a1a3a4b5 + a1b2b3b4 +

a1a3b2b4 + a3a6b4 + a3a4b4 + a1a6b2b3 + a1a3a4b2b3 + a1a3a6b2 + a1a3a4b2)γ2(x6)

8.2.3 UT3(IF5) The AXIOM program given in App. A can be used
to output the resolution in section 8.2.3. These procedures rely heavily
upon our constructed libraries described in Sect. 8.1.1.

The Differential in the Resolution up to Degree 4 We will give the
resolution only up to degree 4; only non-zero differentials are shown.
In degree 1, we have

∂∞(x1) = 4 + t1, ∂∞(x2) = 4 + t2, ∂∞(x3) = 4 + t3,

in degree 2,

∂∞(x1x2) = 4t1t2x3 + (4 + t1)x2 + (1 + 4t2)x1,

∂∞(x1x3) = (4 + t1)x3 + (1 + 4t3)x1,

∂∞(x2x3) = (4 + t2)x3 + (1 + 4t3)x2,

∂∞(γ1(y1)) = t1
[5]x1, ∂∞(γ1(y2)) = t2

[5]x2, ∂∞(γ1(y3)) = t3
[5]x3,

in degree 3,

∂∞(x1x2x3) = (4 + t1)x2x3 + (1 + 4t2)x1x3 + (4 + t3)x1x2,

∂∞(γ1(y1)x1) = (t1 + 4)γ1(y1),

∂∞(γ1(y1)x2) = (t2 + 4)γ1(y1) + t2γ1(y3) + p1x1x3 + t1
[5]x1x2,

∂∞(γ1(y1)x3) = (t3 + 4)γ1(y1) + t1
[5]x1x3,

∂∞(γ1(y2)x1) = (t1 + 4)γ1(y2) + 4t1γ1(y3) + p2x2x3 + 4t2
[5]x1x2,

34

∂∞(γ1(y2)x2) = (t2 + 4)γ1(y2),

∂∞(γ1(y2)x3) = (t3 + 4)γ1(y2) + t2
[5]x2x3,

∂∞(γ1(y3)x1) = (t1 + 4)γ1(y3) + 4t3
[5]x1x3,

∂∞(γ1(y3)x2) = (t2 + 4)γ1(y3) + 4t3
[5]x2x3,

∂∞(γ1(y3)x3) = (t3 + 4)γ1(y3),

where
p1 = 4t1t2 + 4t31t2 + 4t31t2t3 + 4t31t2t

2
3 + 4t21t2 + 4t21t2t3 + 4t41t2t

3
3

+4t41t2t
2
3 + 4t41t2t3 + 4t41t2

p2 = t1t
3
2t

2
3 + t1t

3
2t3 + t1t

3
2 + t1t

4
2t

3
3 + t1t

4
2t

2
3 + t1t

4
2t3 + t1t

4
2

+t1t
2
2t3 + t1t

2
2 + t1t2

and in degree 4,
∂∞(γ1(y1)x1x2) = (4t1t2γ1(y1) + 4t1t2γ1(y3))x3 + (t1 + 4)γ1(y1)x2

+((4t2 + 1)γ1(y1) + 4t2γ1(y3))x1

∂∞(γ1(y2)x1x2) = (4t1t2γ1(y2) + t1t2γ1(y3))x3 + ((t1 + 4)γ1(y2) + 4t1γ1(y3))x2

+(4t2 + 1)γ1(y2)x1

∂∞(γ1(y3)x1x2) = 4t1t2γ1(y3)x3 + (t1 + 4)γ1(y3)x2 + (4t2 + 1)γ1(y3)x1 + t
[5]
3 x1x2x3

∂∞(γ1(y1)x1x3) = (t1 + 4)γ1(y1)x3 + (4t3 + 1)γ1(y1)x1

∂∞(γ1(y2)x1x3) = ((t1 + 4)γ1(y2) + 4t1γ1(y3))x3 + (4t3 + 1)γ1(y2)x1 + 4t
[5]
2 x1x2x3

∂∞(γ1(y3)x1x3) = (t1 + 4)γ1(y3)x3 + (4t3 + 1)γ1(y3)x1

∂∞(γ1(y1)x2x3) = ((t2 + 4)γ1(y1) + t2γ1(y3))x3 + (4t3 + 1)γ1(y1)x2 + t
[5]
1 x1x2x3

∂∞(γ1(y2)x2x3) = (t2 + 4)γ1(y2)x3 + (4t3 + 1)γ1(y2)x2

∂∞(γ1(y3)x2x3) = (t2 + 4)γ1(y3)x3 + (4t3 + 1)γ1(y3)x2

∂∞(γ2(y1)) = t
[5]
1 γ1(y1)x1

∂∞(γ1(y1)γ1(y2)) = q1γ1(y3)x3 + (t
[5]
2 γ1(y1) + q2γ1(y3))x2 + (t

[5]
1 γ1(y2) + q3)γ1(y3)x1

+q4x1x2x3

∂∞(γ1(y1)γ1(y3)) = t
[5]
3 γ1(y1)x3 + t

[5]
1 γ1(y3)x1

∂∞(γ2(y2)) = t
[5]
2 γ1(y2)x2

∂∞(γ1(y2)γ1(y3)) = t
[5]
3 γ1(y2)x3 + t

[5]
2 γ1(y3)x2

∂∞(γ2(y3)) = t
[5]
3 γ1(y3)x3,

where
q1 = 4t41 + 4t41t3 + 4t41t

2
3 + 4t41t

3
3 + 4t31t

3
2 + 4t31t

3
2t3 + 4t31t

3
2t

2
3 + 4t21t

4
2 + 4t21t

4
2t3

+4t31 + 4t31t3 + 4t31t
2
3 + 4t21t3 + 4t21 + 4t41t

4
2t

3
3 + 4t41t

4
2t

2
3 + 4t41t

4
2t3 + 4t41t

4
2

q2 = t31t
4
2 + t21t

4
2 + t41t

4
2 + t42 + t32 + t2 + t31t

2
2 + t41t

3
2 + t21t

3
2 + t22

q3 = 4t41t
4
2 + 4t31 + 4t41t

2
2 + 4t41 + 4t31t

4
2 + 4t31t

2
2 + 4t21t

3
2 + 4t1 + 4t21 + 4t41t

3
2

q4 = t21t
4
2t

2
3 + t21t

4
2t3 + t21t

4
2 + t21t2t3 + t21t2 + t41t

2
2t

2
3 + t41t

2
2t3 + t41t

2
2 + t41t

3
2t3

+t41t
3
2 + t21t

3
2 + t21t

2
2t

3
3 + t21t

2
2t

2
3 + t21t

2
2t3 + t21t

2
2 + t41t2t

3
3 + t41t2t

2
3 + t41t2t3

+t41t2 + t41t
4
2 + t1t

4
2t

3
3 + t1t

4
2t

2
3 + t1t

4
2t3 + t1t

4
2 + t1t2 + t31t

2
2 + t31t

3
2 + t31t

3
2t3

+t31t
3
2t

2
3 + t31t

3
2t

3
3 + t1t

3
2 + t1t

3
2t3 + t1t

3
2t

2
3 + t1t

2
2 + t1t

2
2t3 + t31t2 + t31t2t3 + t31t2t

2
3

+t31t
4
2 + t31t

4
2t3.

35

The Contracting Homotopy for the Resolution Only non-zero values
are shown. Furthermore, we give the contracting homotopy only on
elements that are needed to prove that the differential given above is
indeed a resolution up to the given degree. This has been computed
using Lemma 7.

φ∞(t1) = x1, φ∞(t2) = x2, φ∞(t3) = x3

φ∞(t2x1) = 4x1x2, φ∞(t3x1) = 4x1x3, φ∞(t3x2) = 4x2x3,
φ∞(t41x1) = γ1(y1), φ∞(t42x2) = γ1(y2), φ∞(t43x3) = γ1(y3)

φ∞(t3x1x2) = x1x2x3,
φ∞(t1γ1(y1)) = γ1(y1)x1, φ∞(t2γ1(y1)) = γ1(y1)x2, φ∞(t3γ1(y1)) = γ1(y1)x3,
φ∞(t42x1x2) = 4γ1(y2)x1,φ∞(t2γ1(y2)) = γ1(y2)x2, φ∞(t3γ1(y2)) = γ1(y2)x3,
φ∞(t43x1x3) = 4γ1(y3)x1, φ∞(t43x2x3) = 4γ1(y3)x2,φ∞(t3γ1(y3)) = γ1(y3)x3

φ∞(t2γ1(y1)x1) = 4γ1(y1)x1x2, φ∞(t2γ1(y2)x1) = 4γ1(y2)x1x2,
φ∞(t43x1x2x3) = γ1(y3)x1x2, φ∞(t3γ1(y1)x1) = 4γ1(y1)x1x3,

φ∞(t3γ1(y2)x1) = 4γ1(y2)x1x3, φ∞(t3γ1(y3)x1) = 4γ1(y3)x1x3,
φ∞(t3γ1(y1)x2) = 4γ1(y1)x2x3, φ∞(t3γ1(y2)x2) = 4γ1(y2)x2x3,
φ∞(t3γ1(y3)x2) = 4γ1(y3)x2x3, φ∞(t41γ1(y1)x1) = γ2(y1),
φ∞(t42γ1(y1)x2) = γ1(y1)γ1(y2), φ∞(t43γ1(y1)x3) = γ1(y1)γ1(y3),
φ∞(t42γ1(y2)x2) = γ2(y2), φ∞(t43γ1(y2)x3) = γ1(y2)γ1(y3),
φ∞(t43γ1(y3)x3) = γ2(y3).

The Differential in the Reduced Complex up to Degree 4 By definition,
the reduced complex is the one obtained by tensoring the resolution
with IF5 over the group ring IF5UT3(IF5). It is a suitable complex for
computing the homology of UT3(IF5). Again, only non-zero differen-
tials are shown.

∂∞(x1x2) = 4x3

∂∞(γ1(y1)x2) = γ1(y3) ∂∞(γ1(y2)x1) = 4γ1(y3)

∂∞(γ1(y1)x1x2) = (4γ1(y1) + 4γ1(y3))x3 + 4γ1(y3)x1

∂∞(γ1(y2)x1x2) = (4γ1(y2) + γ1(y3))x3 + 4γ1(y3)x2

∂∞(γ1(y3)x1x2) = 4γ1(y3)x3

∂∞(γ1(y2)x1x3) = 4γ1(y3)x3

∂∞(γ1(y1)x2x3) = γ1(y3)x3

∂∞(γ1(y1)γ1(y2)) = 2γ1(y3)x3

8.2.4 A Cocyclic Code with a Hadamard Property Continu-
ing the computation we find as representatives of a basis of the coho-
mology group H2(UT4(IF2)) the following 7 (abstract) cocycles.

γ2(x1)∗, γ2(x2)∗, γ2(x3)∗, (γ1(x1)γ1(x3))∗, γ2(x4)∗+(γ1(x1)γ1(x4))∗+(γ1(x2)γ1(x4))∗

γ2(x5)∗+(γ1(x3)γ1(x5))∗+(γ1(x2)γ1(x5))∗, (γ1(x2)γ1(x6))∗+(γ1(x3)γ1(x4))∗+(γ1(x4)γ1(x5))∗

36

Applying these functions to the universal cochain from Sect. 8.2.2 re-
sults in the following functional cocycle representatives of the second
cohomology group:

µ1 = a1b1, µ2 = a2b2, µ3 = a3b3, µ4 = a1b3,

µ5 = a1b2b4 + a4b4 + a2b4 + a1b4 + a1a4b2 + a1a2b2,

µ6 = a2b3b5 + a5b5 + a3b5 + a2b5 + a2a5b3 + a2a3b3,

µ7 = a2b6 + a4b5 + a1a2b5 + a2b3b4 + a3b4 + a1b2b3 + a2a4b3 + a1a3b2.

Considering the cocycle µ =
∑7
i=1 µi and evaluating this function on

all pairs of group elements results in a 0-1-matrix H which satisfies
the following combinatorial property

HHt = (64([i = j] + [i = 32j]))1≤i,j≤64

– a generalization of the Hadamard property (cf. [18]). In particular
the first 32 rows without column 1 determine a non-linear (63, 32, 32)
code.

8.3 The 2-Sylow Subgroup of Sp4(F22)

The symplectic group Sp4(F22) is a sporadic simple group of order
979200 = 28325217. The power-commutator presentation of its 2-Sylow
subgroup was computed with the system GAP. 20 It is given by

〈t1, t2, . . . , t8|t21 = t8, (t2, t1) = t5, (t2, t1) = t6, (t3, t1) = t8, (t3, t2) = t7, (t4, t2) = t5〉.

Its mod-2 lower central series is Z1 = Sp4(F22) > Z2 = 〈t5, t6, t7, t8〉 >
Z3 = {1}. This was refined to cyclic factors using GAP’s functions
RightCoset and CanonicalRightCosetElement.21 This gave t1t8 and
did not change ti, i ≥ 2. Writing t1 for t1t8, which does not change the
given relations, we have found the images under the vector space iso-
morphims Θ of the canonical generators e1, . . . , en of the corresponding
elementary abelian group of order 2n. Using a symbolic collecting al-
gorithm, which we have implemented22, we can multiply two generic
elements ta and tb to get the polynomial group law. We find that
tatb = tc where c is equal to

(b1+a1, b2+a2, b3+a3, b4+a4, b5+a4b2+a2b1+a5, b6+a3b1+a6, b7+a3b2+a7, b8+a4b1+a1b1+a8).

20 http://www-history-mcs.st-and.ac.uk/~gap/
21 See sp4-4.gap and corrplie.gap.
22 The code is in binstr.spad.

37

For a group of nilpotency class 2 the power-commutator relations are
directly reflected. The results for the reduced differential computed
with our algorithm are as follows. In degree 1 ∂̄∞ is 0. The non-zero
images of the canonical basis in degree 2 are

∂̄∞(x1x2) = x5,

∂̄∞(x1x3) = x6,

∂̄∞(x1x4) = x8,

∂̄∞(x2x3) = x7,

∂̄∞(x2x4) = x5,

∂̄∞(γ1(y1)) = x8,

while in degree 3 we have,

∂̄∞(x1x2x3) = x6x7 + x5x7 + x5x6 + x3x5 + x2x6 + x1x7,

∂̄∞(x1x2x4) = x4x5 + x2x8 + x1x5,

∂̄∞(x1x2x6) = x5x6,

∂̄∞(x1x2x7) = x5x7,

∂̄∞(x1x2x8) = x5x8,

∂̄∞(x1x3x4) = x6x8 + x4x6 + x3x8,

∂̄∞(x1x3x5) = x5x6,

∂̄∞(x1x3x7) = x6x7,

∂̄∞(x1x3x8) = x6x8,

∂̄∞(x1x4x5) = x5x8,

∂̄∞(x1x4x6) = x6x8,

∂̄∞(x1x4x7) = x7x8,

∂̄∞(x2x3x4) = x5x7 + x4x7 + x3x5,

∂̄∞(x2x3x5) = x5x7,

∂̄∞(x2x3x6) = x6x7,

∂̄∞(x2x3x8) = x7x8,

∂̄∞(x2x4x6) = x5x6,

∂̄∞(x2x4x7) = x5x7,

∂̄∞(x2x4x8) = x5x8,

∂̄∞(γ1(y1)x1) = x1x8,

∂̄∞(γ1(y2)x1) = γ1(y5) + x2x5,

∂̄∞(γ1(y3)x1) = γ1(y6) + x3x6,

∂̄∞(γ1(y4)x1) = γ1(y8) + x4x8,

∂̄∞(γ1(y1)x2) = γ1(y5) + x2x8 + x1x5,

∂̄∞(γ1(y3)x2) = γ1(y7) + x3x7,

∂̄∞(γ1(y4)x2) = γ1(y5) + x4x5,

∂̄∞(γ1(y1)x3) = γ1(y6) + x3x8 + x1x6,

38

∂̄∞(γ1(y2)x3) = γ1(y7) + x2x7,

∂̄∞(γ1(y1)x4) = γ1(y8) + x4x8 + x1x8,

∂̄∞(γ1(y2)x4) = γ1(y5) + x2x5,

∂̄∞(γ1(y1)x5) = x5x8,

∂̄∞(γ1(y1)x6) = x6x8,

∂̄∞(γ1(y1)x7) = x7x8.

A An AXIOM-Program for UT3(IF5)

The first part defines the ingredients for this particular group. From
the line starting with The data structures on, the program is generally
applicable for other p-groups as well. It computes ∂∞ (dNew) and ∇∞
(nablaNew) as well as ∂̄∞ (dNewReduced) and ∇̄∞ (nablaNewReduced)
for the degrees 1 up to 4. For brevity, obvious parts are left out. Sim-
ilar programs for computing the projection f∞ and the contracting
homotopy φ∞ can be found on the internet (see 8.1).

)clear all

)spool ut3-5.out

-- load all the necessary code

)r loadall

-- the prime

p := 5

-- the field with p elements

F := PrimeField p

-- the dimension

n := 3

-- sets of variables

ly := [subscript(’y,[i]) for i in 1..n]

lt := [subscript(’t,[i]) for i in 1..n]

lx := [subscript(’x,[i]) for i in 1..n]

-- the group law for the 3x3 upper triangular matrices

-- with 1’s along the diagonal

rho:(List PF 5,List PF 5) -> List PF 5

rho(x,y) == [x.1+y.1,x.2+y.2,x.3+y.3+x.1*y.2]

-- The data structures

-- the group

G := PPGP(p, n, rho)

-- the elementary abelian group of order p^n

Gp := MultiplicativelyWrittenElementaryAbelian(p, n)

-- the group algebra of the elementary abelian group Gp

-- written multiplicatively

Ap := MonoidRing(F, Gp)

-- The divided power algera over Ap. This is the algebra

-- Fp((Z/pZ)^n) x Gamma(y1,..,yn) where "x" denotes tensor

-- product over F, the prime field with p elements,

-- and Gamma is the algebra with infinitely

-- many generators g_i(j_j), i = 0,1,..., j = 1,..,n and

39

-- multiplication g_i(y_j)g_k(y_j) = [i+j,i]g_{i+j} where

-- [i+j,i] denotes the binomial coefficient mod p.

DP := DIVPOW(Ap, n, ly)

-- This is the Cartan "little resolution" over the group

-- ring of (Z/pZ)^n. It is the differential graded augmented

-- algebra Z/pZ((Z/pZ)^n) x Gamma(y1,..,yn) x Lambda[x1,..,xn]

-- where Lambda denoted the exterior algebra and d is the classical

-- differential. This includes the contracting homotopy.

C := CLR(p, n, lt, ly, lx)

-- This is the bar construction of Eilenberg and MacLane

-- for (Z/pZ)^n.

Bp := BAR(F, Gp)

-- This is the bar construction of Eilenberg and MacLane

-- for G.

B := BAR(F, G)

-- This is the strong deformation retraction of the

-- Cartan little resolution into the bar construction.

-- It includes the inclusion, the retraction and the homotopy.

SDR := SDRPG(p,n,lt,ly,lx)

-- The initiator

-- The package PerturbationUtilites provides conversion functions (::, coerce)

-- to accomplish the isomorphisms Xi and Theta from the paper.

-- The actual initiator T:

tee : Bp -> Bp

tee(b) ==

d1 := d(b :: B)$B :: Bp

d2 := d(b)$Bp

d1-d2

-- t composed with phi = homot

tphi : Bp -> Bp

tphi(b) == tee homot(b)$SDR

-- The iterated transference process for the chain maps on Cartan’s little resolution

-- The basis elements in Cartan’s little resolution

-- Now we go about constructing the degree 1, 2, 3, 4 components in the Cartan little

-- resolution. The canonical bases of Cartan’s little resolutions for degrees 1,2,3,4

Cdegree1 := [monomial(gamma(r.divpow)$DP, r.extalg)$C for r in basisOfDegree(1)$CARTUTS(p,n)]

Cdegree2 := [monomial(gamma(r.divpow)$DP, r.extalg)$C for r in basisOfDegree(2)$CARTUTS(p,n)]

Cdegree3 := [monomial(gamma(r.divpow)$DP, r.extalg)$C for r in basisOfDegree(3)$CARTUTS(p,n)]

Cdegree4 := [monomial(gamma(r.divpow)$DP, r.extalg)$C for r in basisOfDegree(4)$CARTUTS(p,n)]

-- degree 1

tphiListCdegree1 : List List Bp := [];

zerosBp1 : List Bp := [0$Bp for i in 1..#Cdegree1];

nablaCdegree1 := [inc(c)$SDR for c in Cdegree1];

-- apply initiator to images of basis elements of degree 1

tnablaCdegree1 := [tee bp for bp in nablaCdegree1];

zerosBpCheck: Boolean := (nablaCdegree1 = zerosBp1);

if not zerosBpCheck then tphiListCdegree1 := [tnablaCdegree1];

while (not zerosBpCheck) repeat

tphiIteration := [tphi bp for bp in tphiListCdegree1.1]

zerosBpCheck := (tphiIteration = zerosBp1)

if (not zerosBpCheck) then tphiListCdegree1 := cons(tphiIteration,tphiListCdegree1)

-- degree 2

...

40

-- degree 4

...

-- the new limit differential on Cartan’s Little Resolution

-- the lists tphiListCdegree4 contain all the non-zero powers of tphi

-- now project the summands back (f = proj) to Cartan’s Little Resolution

ftphiListCdegree1 := [[proj(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree1];

ftphiListCdegree2 := [[proj(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree2];

ftphiListCdegree3 := [[proj(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree3];

ftphiListCdegree4 := [[proj(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree4];

-- the lists dCdegree contain the applications of the given differential on C to the basis

-- elements, for uniform handling, also put them into ftphiListCdegree

dCdegree1 := [d c for c in Cdegree1];

dCdegree2 := [d c for c in Cdegree2];

dCdegree3 := [d c for c in Cdegree3];

dCdegree4 := [d c for c in Cdegree4];

ftphiListCdegree1 := cons(dCdegree1, ftphiListCdegree1);

ftphiListCdegree2 := cons(dCdegree2, ftphiListCdegree2);

ftphiListCdegree3 := cons(dCdegree3, ftphiListCdegree3);

ftphiListCdegree4 := cons(dCdegree4, ftphiListCdegree4);

-- the new differential is the sum of the given differential and the result of

-- the perturbation process (perturbation lemma)

sumListsC(lc: List C, lc’: List C): List C == [c+c’ for c in lc for c’ in lc’]

-- summing up all lists componentwise

dnewCdegree1 := reduce(sumListsC, ftphiListCdegree1, [0$C for i in 1..#Cdegree1])

dnewCdegree2 := reduce(sumListsC, ftphiListCdegree2, [0$C for i in 1..#Cdegree2])

dnewCdegree3 := reduce(sumListsC, ftphiListCdegree3, [0$C for i in 1..#Cdegree3])

dnewCdegree4 := reduce(sumListsC, ftphiListCdegree4, [0$C for i in 1..#Cdegree4])

-- some function for pretty output

--)r homolprt

-- function for pretty printing

O := OutputForm

say(str) == messagePrint(str)$OutputForm

form(c,yy) == print(hconcat [message("d ")$O,c::O,message(" = ")$O,yy::O])$O

form(f, x, fx) == print(hconcat [message(concat(f,"("))$O,x::O,message(") = ")$O,fx::O])$O

printChainMap(f, degree, basisList, fbasisList) ==

say "---"

print(center [" The chain map "::O, f::O])$O

print(center [" on the canonical basis elements of degree "::O, degree :: O])$O

say "---"

for x in basisList for fx in fbasisList repeat form(f, x, fx)

printChainMap("dNew", 1, Cdegree1, dnewCdegree1)

printChainMap("dNew", 2, Cdegree2, dnewCdegree2)

printChainMap("dNew", 3, Cdegree3, dnewCdegree3)

printChainMap("dNew", 4, Cdegree4, dnewCdegree4)

-- the new limit inclusion nabla from Cartan’s Little Resolution to Bar Construction

-- the lists tphiListCdegree contain all the non-zero powers of tphi

-- now once again apply homotopy phi

phitphiListCdegree1 := [[homot(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree1];

phitphiListCdegree2 := [[homot(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree2];

phitphiListCdegree3 := [[homot(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree3];

phitphiListCdegree4 := [[homot(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree4];

-- the lists nablaCdegree are already constructed,

-- for uniform handling, also put them into phitphiListCdegree

phitphiListCdegree1 := cons(nablaCdegree1, phitphiListCdegree1);

41

phitphiListCdegree2 := cons(nablaCdegree2, phitphiListCdegree2);

phitphiListCdegree3 := cons(nablaCdegree3, phitphiListCdegree3);

phitphiListCdegree4 := cons(nablaCdegree4, phitphiListCdegree4);

-- the new limit inclusion nablanew is the sum of the given inclusion and the result of

-- the perturbation process (perturbation lemma)

sumListsBp(lbp: List Bp, lbp’: List Bp): List Bp== [bp+bp’ for bp in lbp for bp’ in lbp’];

-- summing up all lists componentwise

nablanewCdegree1 := reduce(sumListsBp, phitphiListCdegree1, [0$Bp for i in 1..#Cdegree1]);

nablanewCdegree2 := reduce(sumListsBp, phitphiListCdegree2, [0$Bp for i in 1..#Cdegree2]);

nablanewCdegree3 := reduce(sumListsBp, phitphiListCdegree3, [0$Bp for i in 1..#Cdegree3]);

nablanewCdegree4 := reduce(sumListsBp, phitphiListCdegree4, [0$Bp for i in 1..#Cdegree4]);

printChainMap("nablaNew", 1, Cdegree1, nablanewCdegree1)

printChainMap("nablaNew", 2, Cdegree2, nablanewCdegree2)

printChainMap("nablaNew", 3, Cdegree3, nablanewCdegree3)

printChainMap("nablaNew", 4, Cdegree4, nablanewCdegree4)

-- the new limit inclusion nabla from Cartan’s Little Resolution to Bar Construction

-- the lists tphiListCdegree4 contain all the non-zero powers of tphi

-- now once again apply homotopy phi

phitphiListCdegree1 := [[homot(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree1];

phitphiListCdegree2 := [[homot(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree2];

phitphiListCdegree3 := [[homot(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree3];

phitphiListCdegree4 := [[homot(bp)$SDR for bp in LL] for LL in reverse tphiListCdegree4];

-- the lists nablaCdegree are already constructed,

-- for uniform handling, also put them into phitphiListCdegree

phitphiListCdegree1 := cons(nablaCdegree1, phitphiListCdegree1);

phitphiListCdegree2 := cons(nablaCdegree2, phitphiListCdegree2);

phitphiListCdegree3 := cons(nablaCdegree3, phitphiListCdegree3);

phitphiListCdegree4 := cons(nablaCdegree4, phitphiListCdegree4);

-- the new limit inclusion nablanew is the sum of the given inclusion and the result of

-- the perturbation process (perturbation lemma)

sumListsBp(lbp: List Bp, lbp’: List Bp): List Bp== [bp+bp’ for bp in lbp for bp’ in lbp’]

-- summing up all lists componentwise

nablanewCdegree1 := reduce(sumListsBp, phitphiListCdegree1, [0$Bp for i in 1..#Cdegree1]);

nablanewCdegree2 := reduce(sumListsBp, phitphiListCdegree2, [0$Bp for i in 1..#Cdegree2]);

nablanewCdegree3 := reduce(sumListsBp, phitphiListCdegree3, [0$Bp for i in 1..#Cdegree3]);

nablanewCdegree4 := reduce(sumListsBp, phitphiListCdegree4, [0$Bp for i in 1..#Cdegree4]);

-- reduction, i.e. tensoring with the ground field, i.e. summing up coefficients

-- Here we tensor the resolution with Z/pZ over the group ring:

reductionC : C -> C

reductionC c ==

brFc := basisRepresentationOverF(c)$C

ans : C := 0

-- note that we do that by simply ’forgetting’ the group elements

-- i.e. summing up their coefficients for the augmentation

for rc in brFc repeat ans := ans + rc.f * gamma(rc.y)$DP * (rc.x::EAB::C)

ans

-- Here we tensor the bar construction with Z/pZ over the group ring:

reductionBp : Bp ->Bp

reductionBp bp == reduce(+, [monomial(epsilon(c)::Ap, s)$Bp for c in coefficients bp

for s in support bp],0$Bp)

say("--")

say(" The reduced complex ")

say("--")

dnewredCdegree1 := [reductionC dnewc for dnewc in dnewCdegree1];

nablanewredCdegree1 := [reductionBp nablanewc for nablanewc in nablanewCdegree1];

printChainMap("dNewReduced", 1, Cdegree1, dnewredCdegree1)

42

printChainMap("nablaNewReduced", 1, Cdegree1, nablanewredCdegree1)

...

printChainMap("nablaNewReduced", 4, Cdegree4, nablanewredCdegree4)

say("--")

say "-- End of homological computation (differential, inclusion) of given Group"

say("--")

)spool

43

References

1. Donald W. Barnes and Larry A. Lambe. A fixed point approach to homological
perturbation theory. Proc. Amer. Math. Soc., 112(3):881–892, 1991.

2. R. Brown. The twisted Eilenberg-Zilber theorem. In Simposio di Topologia
(Messina, 1964), pages 33–37. Edizioni Oderisi, Gubbio, 1965.

3. Henri Cartan and Samuel Eilenberg. Homological algebra. Princeton University
Press, Princeton, N. J., 1956.

4. Henri Cartan, J. C. Moore, R. Thom, and J. P. Serre. Algèbras d’Eilenberg-
MacLane et homotopie. 2ieme ed., revue et corrig ee. Secretariat mathematique
(Hektograph), Paris, 1956.

5. Torsten Ekedahl, Johannes Grabmeier, and Larry Lambe. A Generic Language
for algebraic computations, 2000. In preparation.

6. G. Ellis and I. Kholodna. Second cohomology of finite groups with trivial
coefficients. Homology, Homotopy & Appl., 1:163–168, 1999.

7. D. L. Flannery. Transgression and the calculation of cocyclic matrices. Aus-
tralas. J. Combin., 11:67–78, 1995.

8. D. L. Flannery. Calculation of cocyclic matrices. J. Pure Appl. Algebra,
112(2):181–190, 1996.

9. D. L. Flannery, K. J. Horadam, and W. de Launey. Cocyclic hadamard matrices
and difference sets. Discrete Appl. Math., 102:47–61, 2000.

10. D. L. Flannery and E. A. O’Brien. Computing 2-cocycles for central extensions
and relative difference sets. Comm. Algebra, 28(4):1939–1955, 2000.

11. R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-
Wesley, Reading, Massachusetts, 1989.

12. V. K. A. M. Gugenheim. On the chain-complex of a fibration. Illinois J. Math.,
16:398–414, 1972.

13. V. K. A. M. Gugenheim and L. A. Lambe. Perturbation theory in differential
homological algebra. I. Illinois J. Math., 33(4):566–582, 1989.

14. V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff. Perturbation theory
in differential homological algebra. II. Illinois J. Math., 35(3):357–373, 1991.

15. K. J. Horadam and W. de Launey. Cocyclic development of designs. J. Alge-
braic Combin., 2(3):267–290, 1993.

16. K. J. Horadam and W. de Launey. Erratum: “Cocylic development of designs”.
J. Algebraic Combin., 3(1):129, 1994.

17. K. J. Horadam and W. de Launey. Generation of cocyclic Hadamard matrices.
In Computational algebra and number theory (Sydney, 1992), volume 325 of
Math. Appl., pages 279–290. Kluwer Acad. Publ., Dordrecht, 1995.

18. K. J. Horadam and A. A. I. Perera. Codes from cocycles. In Lecture Notes
in Computer Science, volume 1255, pages 151–163. Springer-Verlag, Berlin-
Heidelberg-New York, 1997.

19. Johannes Huebschmann. The homotopy type of Fψq. The complex and sym-
plectic cases. In Applications of algebraic K-theory to algebraic geometry and
number theory, Part I, II (Boulder, Colo., 1983), pages 487–518. Amer. Math.
Soc., Providence, R.I., 1986.

20. Johannes Huebschmann. Perturbation theory and free resolutions for nilpotent
groups of class 2. J. Algebra, 126(2):348–399, 1989.

21. Johannes Huebschmann and Tornike Kadeishvili. Small models for chain alge-
bras. Math. Z., 207(2):245–280, 1991.

44

22. Bertram Huppert and Norman Blackburn. Finite groups. II. Springer-Verlag,
Berlin-New York, 1982. Grundlehren der Mathematischen Wissenschaften,
Band 242.

23. N. Jacobson. Restricted Lie algebras of characteristic p. Trans. Amer. Math.
Soc., 50:15–25, 1941.

24. Richard D. Jenks and Robert S. Sutor. Axiom. The scientific computation
system. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

25. S. A. Jennings. The structure of the group ring of a p-group over a modular
field. Trans. Amer. Math. Soc., 50:175–185, 1941.

26. Leif Johansson and Larry Lambe. Transferring algebra structures up to homol-
ogy equivalence. Math. Scand., 88(2), 2001.

27. Leif Johansson, Larry Lambe, and Emil Sköldberg. On constructing resolutions
over the polynomial algebra, 2000. Preprint.

28. Larry Lambe. Next generation computer algebra systems AXIOM and the
scratchpad concept: applications to research in algebra. In Analysis, algebra,
and computers in mathematical research (Lule̊a, 1992), volume 156 of Lecture
Notes in Pure and Appl. Math., pages 201–222. Dekker, New York, 1994.

29. Larry Lambe. The 1996 Adams Lectures at Manchester University: New com-
putational methods in algebra and topology, May 20 1996.

30. Larry Lambe and Jim Stasheff. Applications of perturbation theory to iterated
fibrations. Manuscripta Math., 58(3):363–376, 1987.

31. Larry A. Lambe. Resolutions via homological perturbation. J. Pure Appl.
Algebra, 12:71–87, 1991.

32. Larry A. Lambe. Homological perturbation theory, Hochschild homology, and
formal groups. In Deformation theory and quantum groups with applications to
mathematical physics (Amherst, MA, 1990), volume 134 of Contemp. Math.,
pages 183–218. Amer. Math. Soc., Providence, RI, 1992.

33. Larry A. Lambe. Resolutions which split off of the bar construction. J. Pure
Appl. Algebra, 84(3):311–329, 1993.

34. Saunders Mac Lane. Homology. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. Reprint of the 1975 edition.

35. J. Peter May. The cohomology of restricted Lie algebras and of Hopf algebras.
Bull. Amer. Math. Soc., 71:372–377, 1965.

36. D. Quillen. On the associated graded ring of a group ring. J. Algebra, 10:411–
418, 1968.

37. Jean-Pierre Serre. Lie algebras and Lie groups. 1964 lectures, given at Harvard
University, 2nd ed., volume 1500 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin-Heidelberg-New York, 1992.

38. C.T.C. Wall. Resolutions for extensions of groups. Proc. Phil. Soc., 57:251–255,
1961.

